
nextwork.org

Deploy an App
Across Accounts

Negbe Pierre

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Introducing Today's Project!

In this special multiplayer project, I'm working with a buddy to build, store, and
share Docker container images using AWS Elastic Container Registry (ECR).
Together, we are deploying applications across multiple AWS accounts, ensuring
secure and efficient cross-account deployments. This involves creating Docker
images for our custom applications, securely storing them in Amazon ECR, and
exchanging container images with each other to launch and test applications.
Through this hands-on collaboration, we are enhancing our cloud deployment
skills, improving our understanding of AWS security best practices, and optimizing
workflow automation for scalable cloud applications

What is Amazon ECR?

Amazon Elastic Container Registry (ECR) is a fully managed Docker container
registry that makes it easy to store, manage, and deploy container images
securely. In today s̓ project, I used ECR to store and share my container image,
allowing my project buddy to pull and deploy it. I authenticated Docker with ECR,
pushed my built image, resolved permission issues, and successfully deployed an
application using the stored image. This ensured a seamless workflow for cross-
account container deployment.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

One thing I didn't expect...

One thing I didnʼt expect in this project was the complexity of setting up
permissions for cross-account access in Amazon ECR. While pushing and pulling
images seemed straightforward, resolving permission issues required updating
IAM roles, repository policies, and ensuring correct authentication. It was a great
learning experience in managing secure access between AWS accounts while
working with containerized applications.

This project took me...

200 minutes

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Creating a Docker Image

I set up Dockerfile and index.html. Both files are needed because: Dockerfile
defines the instructions for building a Docker image using Nginx as the web server.
It ensures that the container will serve the correct web content by copying the
index.html file into the appropriate Nginx directory. index.html is the actual
webpage content that will be displayed when the container runs. It replaces the
default Nginx welcome page with a custom webpage inside the container.
Together, these files allow me to create a containerized web server that serves my
custom webpage

My Dockerfile tells Docker to create a containerized web server using Nginx and
serve a custom HTML file. It pulls the latest Nginx image as the base (FROM
nginx:latest). It copies my index.html file into the default Nginx web directory
(COPY index.html /usr/share/nginx/html/). This ensures that when the container
runs, Nginx serves my custom webpage instead of the default welcome page. This
setup allows me to deploy a lightweight, portable web server that can be run
anywhere using Docker.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

I also set up an ECR repository

ECR stands for Amazon Elastic Container Registry. It is important because it
provides a secure, scalable, and managed container image registry that integrates
seamlessly with AWS services like ECS, EKS, and Lambda. With ECR, developers
can store, manage, and deploy container images without worrying about
infrastructure management, security updates, or scalability. It ensures that teams
always have access to the latest container versions for efficient deployments

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Set Up AWS CLI Access

AWS CLI can let me run ECR commands

AWS CLI is the Amazon Web Services Command Line Interface, a tool that allows
users to manage AWS services through commands in a terminal instead of using
the AWS Management Console. The CLI asked for my credentials because it needs
authentication to interact with AWS securely. By running aws configure, I provided
my Access Key ID and Secret Access Key, which allow the CLI to make authorized
API requests on my behalf. This setup is essential for automating AWS tasks

To enable CLI access, I set up a new IAM user with the permission to access
Amazon ECR for the NextWork project on cross-account deployment. I also set up
an access key for this user, which means I can authenticate programmatically to
AWS services, such as ECR, using the AWS CLI instead of logging in manually. This
allows me to push, pull, and manage container images securely across accounts
while following AWS best practices for identity and access management.

To pass my credentials to the AWS CLI, I ran the command aws configure. I had to
provide my Access Key ID, Secret Access Key, AWS Region Code (e.g., us-west-
2), and the preferred output format (default is json). This step ensures that my AWS
CLI is authenticated and can interact with AWS services like Amazon ECR, allowing
me to push and pull container images securely without manually logging in each
time.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Pushing My Image to ECR

Push commands are AWS CLI commands used to upload container images from a
local machine to Amazon Elastic Container Registry (ECR). These commands help
authenticate Docker with ECR, tag images, and push them securely to the
repository. This ensures that applications can pull the latest images for
deployment. The process includes: 1) Authenticate with aws ecr get-login-
password. 2) Tag the image for ECR. 3) Push using docker push <ECR_URI>. This
enables seamless containerized app deployment.

There are three main push commands

To authenticate Docker with my Amazon Elastic Container Registry (ECR)
repository, I executed the following command:"aws ecr get-login-password --
region <your-region> | docker login --username AWS --password-stdin <your-
account-id>.dkr.ecr.<your-region>.amazonaws.com "This command enables
secure authentication by retrieving an access token via the AWS CLI and passing it
directly to Docker. By using this method, I ensured that my Docker client could
interact with the ECR repository, allowing me to push and pull container images
efficiently. This step is crucial for maintaining a seamless container deployment
workflow within AWS.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

To push my container image, I ran the command: "docker push
345594588009.dkr.ecr.us-east-2.amazonaws.com/nextwork/cross-account-
docker-app:latest "Pushing means uploading my locally built Docker image to
Amazon Elastic Container Registry (ECR), making it accessible for deployment.
This ensures that Player B and any other authorized users can pull the latest
version of the image without needing manual transfers.

When I built my image, I tagged it with the label latest. This means that the image
represents the most recent version of my application. Tagging an image as latest
ensures that any deployments or services pulling from the repository will always
retrieve the most up-to-date version without needing to specify a different tag
manually. This approach simplifies version management and helps streamline
continuous integration and deployment workflows in containerized environments.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Resolving Permission Issues

When I tried pulling my project buddy's container image for the first time, I saw the
error "repository does not exist or may require 'docker login'". This was because I
wasnʼt authenticated with Amazon ECR, so I needed to run the authentication
command."aws ecr get-login-password --region <region> | docker login --
username AWS --password-stdin <account-id>.dkr.ecr.<region>.amazonaws.com
" Additionally, I was using the wrong repository URI, which meant I needed to
ensure I included the full path with the image name and tag. Lastly, my buddy s̓
repository was private, so I needed the correct permissions to access and pull their
image. After fixing these issues, I successfully pulled the image

To resolve each other's permission errors, my buddy and I updated our ECR
repository policies by adding each other's AWS account IDs and role ARNs. We
modified the policy JSON to grant necessary pull and push permissions, ensuring
seamless access and deployment.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


NextWork.org

Everyone
should be in a
job they love.
Check out nextwork.org for
more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

