
nextwork.org

Set Up
Kubernetes
Deployment

Negbe Pierre

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Introducing Today's Project!

In this project, I will pull a backend application from GitHub, containerize it using
Docker, and push the image to Amazon ECR because this simulates a real-world
DevOps workflow. It helps me understand how developers prepare apps for
Kubernetes deployment and test my ability to troubleshoot configuration issues
effectively—all skills highly relevant to modern cloud-native development.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Tools and concepts

I used Amazon EKS, Git, Docker, and Amazon ECR to containerize a backend
application and deploy it using Kubernetes. These tools worked together to
simulate a real-world DevOps workflow where code is developed, containerized,

pushed to a container registry, and then deployed to a managed Kubernetes
service. Key steps include: Cloning the backend code from a GitHub repository
that already had a Dockerfile and backend logic written using Flask. Creating a
Kubernetes cluster using eksctl, which provisioned the EKS infrastructure on AWS.

Installing Docker on the EC2 instance and resolving permission errors by adding
the ec2-user to the Docker group, then starting the Docker daemon. Building a
Docker image of the backend application using the Dockerfile, which defined the
environment and instructions for the image. Pushing the Docker image to Amazon
ECR, which acts as a container registry for storing images that Kubernetes can
later pull. Exploring the backend files like requirements

Project reflection

2 hours

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Something new that I learnt from this experience was how containerization and
Kubernetes work together in a real-world deployment pipeline. While I had a basic
understanding of Docker and containers before, this project showed me how a
Docker image is built using a Dockerfile, pushed to Amazon ECR, and then pulled
by Amazon EKS for deployment. I also learned how to troubleshoot common issues
like Docker permission errors and how to grant the right access to the ec2-user.
More importantly, I gained insight into how APIs are created and consumed within
a Flask app, and how backend logic connects to external APIs to fetch and process
data. Seeing the entire process from source code to a running app inside a
Kubernetes cluster really brought the DevOps workflow to life for me.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

What I'm deploying

To set up today s̓ project, I launched a Kubernetes cluster. Steps I took to do this
included: launching an EC2 instance, installing eksctl, and configuring the
instance's AWS credentials. I then used eksctl to define the cluster s̓ name, region,

version, node type, and scaling parameters (min, max, desired nodes). I ran the
create cluster command to deploy the cluster in the EU (London) region, making it
ready to run containerized apps using Kubernetes efficiently.

I'm deploying an app's backend

Next, I retrieved the backend that I plan to deploy. An apps̓ backend means the
part of the application that handles things users donʼt see—like storing data,

handling user logins, or running logic. I retrieved backend code by cloning a GitHub
repository called nextwork-flask-backend. This copied all the backend files (like
app.py, Dockerfile, and requirements.txt) into my EC2 instance so I can build and
deploy them later in the project.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Building a container image

Once I cloned the backend code, my next step is to build a container image of the
backend. This is because Kubernetes deploys applications using container images.
A container image includes everything the backend app needs—its code, libraries,
and settings—so it can run consistently on any system. By building this image, Iʼm
making the app ready for Kubernetes to deploy and manage smoothly across
different environments

When I tried to build a Docker image of the backend, I ran into a permissions error
because the ec2-user (the default user for the EC2 instance) didnʼt have
permission to run Docker commands. The Docker engine was set up for the root
user, and I wasnʼt using sudo, so Docker couldnʼt connect to its daemon. To fix this,
I either needed to prefix the command with sudo or give ec2-user permission to
use Docker without needing elevated rights.

To solve the permissions error, I added the ec2-user to the Docker group using the
command sudo usermod -a -G docker ec2-user. The Docker group is a special
user group in Linux that allows users to run Docker commands without needing to
type sudo every time. By adding ec2-user to this group, I gave it the right
permissions to build Docker images and run Docker commands freely.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Container Registry

I'm using Amazon ECR in this project to store and manage my Docker container
image. ECR is a good choice for the job because it's an AWS-managed container
registry that integrates smoothly with EKS, allowing Kubernetes to deploy apps
directly from it.

Container registries like Amazon ECR are great for Kubernetes deployment
because they provide a secure and centralized place to store container images.
This makes it easy for Kubernetes to pull the exact version of an app it needs,
ensuring consistent and reliable deployments. It also simplifies collaboration
between teams and supports scaling by making images easily accessible across
different environments.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

EXTRA: Backend Explained

After reviewing the app's backend code, I've learnt that the backend is responsible
for handling user input, retrieving external data, and formatting it for output in a
way that the frontend—or the user—can easily understand. It uses Flask to create
a simple API that connects to the Hacker News Search API. When a user enters a
topic, this input is passed into the backend, which then fetches relevant data from
the external API. The code processes this raw data by filtering and organizing it
into a structured format using JSON. This processed information is then returned
to the user, providing them with clean and relevant search results. The logic behind
this is all housed in the app.py file, which orchestrates how data is requested,

handled, and delivered. In essence, I now understand that the backend plays the
role of a smart middleman. It listens for requests, communicates with external
services to gather information, and ensures the response is readable and usable.

This exploration

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Unpacking three key backend files

The requirements.txt file is a crucial component of the backend project because it
defines all the Python libraries that the application depends on to function properly.
When building the backend, developers include this file to ensure that anyone who
works on or deploys the app can install the exact versions of the tools it needs. In
this project, the file specifies the backend uses Flask as its web framework,

providing the structure and functionality to handle user requests and serve
responses. To help the app expose an API, it uses an extension called Flask-
RESTX, which simplifies the process of building RESTful interfaces. The app also
needs the Requests library, which allows it to communicate with external services
and retrieve data from the web. Additionally, Werkzeug is included as it handles the
routing system used by Flask. This lets the application know which function to run
when it receives a specific request. By including these dependencies in
requirements.txt, the build pr

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

The Dockerfile gives Docker instructions on how to build a container image for the
backend of an application. It acts like a recipe, telling Docker exactly what steps to
follow in order to create a working environment where the application can run
smoothly and consistently across any system. This is what makes containerization
so powerful—everything the app needs to function is bundled into one lightweight,
portable image that behaves the same way no matter where it's deployed. Key
commands in this Dockerfile include FROM python:3.9-alpine, which specifies the
base image to use—here, a slim version of Python 3.9 that helps keep the final
image small and efficient. The LABEL command adds metadata, identifying the
images̓ author. With WORKDIR /app, Docker sets the working directory to /app,

meaning all subsequent commands will be run from that location in the container.
The Dockerfile also copies files from your local project into the image. It uses
COPY requirements.txt requirements.t

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

The app.py file contains the core logic of the backend application. It defines how
the application should behave, how it should respond to incoming requests, and
how it communicates with external services. In this case, the file is built using
Flask, a lightweight Python web framework, and Flask-RESTx, which helps to easily
build RESTful APIs. At the beginning of the file, several essential libraries are
imported, including Flask, Flask-RESTx, Requests, and JSON. These libraries
enable the app to handle HTTP requests, build endpoints, and interact with data in
JSON format. The Flask app is initialized, and a new API is attached to it using
Api(app). A single route is defined using the @api.route('/contents/<string:topic>')

decorator, which allows users to search for content by passing a topic through the
URL. Inside the route, there is a class called SearchContentsResource, and it
contains a get method. When a user sends a GET request to this route, the
backend takes the topic provid

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


NextWork.org

Everyone
should be in a
job they love.
Check out nextwork.org for
more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

