
nextwork.org

Create
Kubernetes
Manifests

Negbe Pierre

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Introducing Today's Project!

In this project, I will create the key Kubernetes manifest files specifically a
Deployment manifest and a Service manifest—because these files tell Kubernetes
how to deploy and manage my containerized backend. After learning how to build
and push a Docker image of the backend to Amazon ECR and how Kubernetes
pulls that image for deployment, this next step is all about giving Kubernetes the
actual instructions it needs to run the app. The Deployment manifest will define
how many replicas (copies) of the backend to run and how to update them,

ensuring availability and reliability. The Service manifest will expose the backend
so it can receive traffic making it accessible to users or other services. These
YAML configuration files are essential for controlling how the backend behaves
once deployed in the cluster. By the end of this project, Iʼll have the foundation for a
fully automated and managed Kubernetes deployment using AWS tools like EKS,

ECR, and CloudFormation along with GitHub

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Tools and concepts

I used Amazon EKS, eksctl, EC2, Docker, and ECR to set up a Kubernetes
environment, build and store a container image, and deploy an application to a
managed Kubernetes cluster. Key concepts include using manifests like
Deployment and Service YAML files to tell Kubernetes how to run and expose
applications, pushing Docker images to a container registry for accessibility, and
creating replicas of Pods to ensure reliability and scalability.

Project reflection

to learn more on kurbenates

2 hours

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Project Set Up

Kubernetes cluster

To set up today s̓ project, I launched a Kubernetes cluster. Steps I took to do this
included spinning up an EC2 instance on AWS to serve as my control machine,

installing eksctl to manage Kubernetes resources, and configuring AWS credentials
on the instance. I then used eksctl to create the Kubernetes cluster in the eu-west-
2 region, defining the cluster name, nodegroup, instance type, node count, and
Kubernetes version to complete the setup.

Backend code

I retrieved the backend that I plan to deploy by cloning a GitHub repository using
Git. This repository contains all the necessary backend code, including the
application logic, Dockerfile, and dependencies listed in the requirements file.

Backend is the part of the application that handles requests, processes data, and
communicates with external services, ensuring the app behaves correctly behind
the scenes

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Container image

Once I cloned the backend code, I built a container image because Kubernetes
needs an image to deploy applications. I used Docker to package the backend
code, dependencies, and configuration into a single container image. I made sure
Docker was running, then ran the docker build command from within the backend
project directory. This created a reusable image that can run consistently across
any environment Kubernetes assigns it to

I also pushed the container image to a container registry, because Kubernetes
needs a place to pull the image from during deployment. To push the image to
ECR, I created a repository in Amazon ECR, tagged the Docker image using the
repository URI, authenticated Docker to ECR using the AWS CLI, and then pushed
the image. This ensures the image is accessible by Kubernetes and helps with
consistent deployments.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Manifest files

Kubernetes manifests are configuration files written in YAML or JSON that tell
Kubernetes how to deploy and manage applications in a cluster. Manifests are
helpful because they define the desired state of resources like deployments,
services, and pods—such as which container image to run, how many replicas to
use, and how to expose the app—making deployments consistent, repeatable, and
easier to manage.

A Kubernetes deployment manages how many copies (replicas) of an application
should be running and ensures they stay available and up to date. It handles rolling
updates, restarts failed pods, and maintains the desired application state. The
container image URL in my Deployment manifest tells Kubernetes exactly which
image to use—in this case, from Amazon ECR—so it can pull and run the right
version of the app on each pod

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Service Manifest

A Kubernetes Service exposes a set of pods to the network so that other apps,
users, or services can access them. You need a Service manifest to tell Kubernetes
how to direct traffic to your app. It defines important details like the type of service
(e.g., NodePort), the target port on the pod, and the port that users or other apps
will use to connect. Without it, your app would run but not be reachable from
outside the cluster

My Service manifest sets up a NodePort service that makes my application
accessible externally. It targets pods labeled nextwork-flask-backend and routes
traffic on port 8080 using the TCP protocol. This setup tells Kubernetes how to
expose my app and send requests to the correct container running in the cluster.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Deployment Manifest

Annotating the Deployment manifest helped me understand how Kubernetes
deployments work because it broke down each line and showed me what it does.
By adding comments, I could clearly see how the replicas field controls how many
Pods run, how the selector and labels connect the Deployment to the right Pods,
and how the container image is pulled from ECR. This made the structure and
purpose of each section easier to follow, and it gave me a better understanding of
how Kubernetes manages and scales applications behind the scenes.

A notable line in the Deployment manifest is the number of replicas, which means
how many identical copies of the application should be running at all times in the
cluster. This helps ensure availability—if one instance fails, others are still running
to handle traffic. Pods are relevant to this because each replica runs inside a Pod.

A Pod is the smallest deployable unit in Kubernetes and contains one or more
containers. So when I set replicas: 3, Kubernetes will launch 3 separate Pods, each
running my backend container to distribute the load and improve reliability.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

One part of the Deployment manifest I still want to know more about is the selector
and how it matches with the labels inside the template, because while I understand
that they help connect the Deployment to the correct Pods, Iʼm still a little unsure
about how strict or flexible that matching process is. Iʼd also like to know what
happens if the labels donʼt match exactly — does the Deployment fail, or does
Kubernetes try to fix it somehow?

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


NextWork.org

Everyone
should be in a
job they love.
Check out nextwork.org for
more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

