
nextwork.org

Deploy Backend
with Kubernetes

Negbe Pierre

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Introducing Today's Project!

In this project, I will deploy the backend of an application on a Kubernetes cluster
using AWS EKS because it simulates a real-world DevOps workflow and
demonstrates how to manage containerized applications in a scalable, production-

ready environment. Here’s what we’re doing and why: Set up the backend for
deployment Because this is the core of the app that will run on the cloud
infrastructure. Install kubectl (Kubernetes command-line tool) Because we use it to
interact with the Kubernetes cluster — to deploy, inspect, and manage
applications. Deploy the backend using EKS (Elastic Kubernetes Service) Because
EKS is a managed Kubernetes service on AWS, making it easier to run Kubernetes
without managing the control plane. Track the deployment Because monitoring and
troubleshooting are essential to ensure that the app is running as expected in the
cluster. This project ties together GitHub, Docker, EC2, ECR, and Kubernetes giving
you hands-on practice

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Tools and concepts

I used Kubernetes, ECR, kubectl, and eksctl to containerize and deploy an
application using Amazon EKS. Key concepts include using manifests (Deployment
and Service) to define how apps should run and be exposed, storing container
images in ECR for easy cluster-wide access, and managing the deployment
lifecycle with kubectl. I also configured IAM roles to grant permissions and
validated deployment through the EKS console.

Project reflection

2hours

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Project Set Up

Kubernetes cluster

To set up today's project, I launched a Kubernetes cluster. The cluster's role in this
deployment is to serve as the control center where Kubernetes manages
containerized applications — specifically the backend of our app. It handles critical
tasks like scheduling, scaling, networking, and updating containers. Once the
backend application is deployed, the EKS cluster ensures it runs smoothly across
nodes (groups of EC2 instances) and stays highly available and responsive to
traffic and performance needs.

Backend code

I retrieved backend code by cloning a GitHub repository that contains the backend
logic for the application. Pulling code is essential to this deployment because it
provides the server-side functionality that the application needs to process user
requests, manage data, and connect to databases or other services. Without this
code, there would be nothing to containerize, push to ECR, or deploy on the EKS
cluster.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Container image

Once I cloned the backend code, I built a container image because Kubernetes
doesn’t work with raw source code—it needs a pre-built container image to run the
app consistently across different environments. Without an image, it would be
difficult for Kubernetes to create and manage multiple identical copies (pods) of
the backend application.

I also pushed the container image to a container registry, which is Amazon ECR
(Elastic Container Registry), because ECR provides a secure and scalable location
to store my Docker images. This makes it easy for Kubernetes (via EKS) to pull the
image whenever it needs to create or update pods. ECR facilitates scaling for my
deployment because all nodes in my Kubernetes cluster can consistently pull the
latest version of the image from a centralized location, ensuring my app runs the
same way across different environments and instances

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Manifest files

Kubernetes manifests are a set of instructions that tell Kubernetes how to run your
app. Manifests are helpful because they describe everything Kubernetes needs to
know—such as which container image to use, how many replicas to create, and
how much memory to allocate. Without manifests, you'd have to manually
configure each deployment every time, which would be confusing and error-
prone. Manifests make the deployment process repeatable, consistent, and easier
to manage.

A Deployment manifest manages how many copies (pods) of an application should
run, and ensures they stay running. It defines the desired state of your app—for
example, which container image to use, how many replicas to create, and how to
update them. The container image URL in my Deployment manifest tells
Kubernetes exactly where to pull the backend app from—usually from a container
registry like Amazon ECR—so it can deploy the right version of the app across the
cluster

A Service resource exposes an application to internal or external traffic, making it
reachable across the network. My Service manifest sets up a NodePort type
service that routes external traffic on port 8080 to the app running on the
Kubernetes cluster. This ensures users can access the backend even from outside
the cluster by connecting through the exposed port

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Backend Deployment!

To deploy my backend application, I first installed the kubectl CLI tool since it
wasn’t pre-installed. Then, I used kubectl apply -f flask-deployment.yaml to deploy
my backend container and kubectl apply -f flask-service.yaml to expose it. These
manifest files told Kubernetes how to run and expose my app on the EKS cluster.

kubectl

kubectl is the command-line tool for interacting with Kubernetes resources like
Deployments and Services. I need this tool to apply my manifest files and manage
the app once the cluster is running. I can't use eksctl for the job because eksctl is
mainly for setting up or deleting the EKS cluster, not for managing or deploying
apps within it.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

Verifying Deployment

My extension for this project is to use the EKS console to investigate and verify the
progress of my backend deployment visually. I had to set up IAM access policies
because Amazon EKS requires proper authentication to allow users to interact with
the cluster and view resources like nodes, deployments, and services. I set up
access by running the eksctl create iamidentitymapping command with my IAM
user ARN and region to grant myself admin-level permissions

Once I gained access into my cluster's nodes, I discovered pods running inside
each node. Pods are the smallest deployable units in Kubernetes and they bundle
one or more containers together so they can operate as a single unit. You can’t
deploy containers on their own—they must be in a pod. Containers in a pod share
the same network space and storage, which allows them to communicate and
exchange data more efficiently.

The EKS console shows you the events for each pod, where I could see that the
pod was trying to pull the container image but failed. It displayed errors like
ErrImagePull and ImagePullBackOff, meaning Kubernetes couldn’t fetch the image
from the registry. This validated that there was an issue with the image URL or
permissions in my deployment manifest, confirming that the backend wasn’t
running successfully due to image pull errors.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Negbe Pierre
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


NextWork.org

Everyone
should be in a
job they love.
Check out nextwork.org for
more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

